
x16lib v0.1

by Unartic

x16lib has subroutines to extend BASIC and aid assembly developers

with commonly used commands.

General

X16lib is loaded in a rambank of choice. The rambank in which x16lib

is loaded is not available to the main program anymore. X16lib uses

the 16 bit registers r0 to r16 for various purposes and depending on

which function is used, a set of these registers is used. Also

address range $22 to $34 is used.

Notes for BASIC programmers

X16lib taps directly into the variable space of basic for fast use

of variable data. You as a programmer have to make sure the rambank

on which x16lib is loaded is active when calling a function from

x16lib. The subdirectoy /basic contains examples, both in

untokenized basic files (*.bas) as in tokenized basic files (*.prg).

The content of .bas files can by pasted directly into the emulator

window. The .prg files can be loaded via basic: LOAD “EXAMPLE.PRG”

X16lib uses dedicated variable names: XF$,X1$,X1%,X2$,X2%,XS$,XS%

These variables should not be used in your basic program for other

purposes.

As you’ll see in several examples x16lib can use BASIC string

variables in two ways:

1. You can directly set a x16lib string variable:
X1$=”THIS IS MY STRING”

2. Or you can indirectly set a string variable:
A$=”THIS IS MY STRING”

X1$=”A$”

In both cases the string “THIS IS MY STRING” is passed to x16lib.

Before the first use of x16lib, it must be loaded into highram like

this:

BANK 1:BLOAD "X16LIB.BIN",8,1,$A000

This will assume x16lib.bin is in the current directory and loads it

into rambank 1. You can select any rambank you like.

After setting the appropriate variables (based on the function) the

command: SYS $A000 will execute the function.

Notes for Assembly programmers

By including x16lib.inc into your project, you have direct access to

all functions in the library. Before first use the library must be

loaded to a rambank of choice. X16lib.inc contains a subroutine to

do so. You as a programmer have to make sure the rambank on which

x16lib is loaded is active when calling a function from x16lib. All

strings have to be terminated with a $0 byte.

PrintCenter
Prints a string in the center of the screen on a selected line.

BASIC

Function: XF$=”PRINTCENTER”

Variables: X1$ -> contains the text to print

 X2% -> line number to print the text on

Example: /basic/print.bas or /basic/print.prg

Assembly

Function: jsr fPrintCenter

Setup: - Address of the symbol containing a string which

and with a zero-byte in r0

- Line to print on in r1H

 MyString: .asciiz “this is my string”

 lda #<MyString

sta r0

lda #>MyString

sta r0+1

lda #5

sta r1H

jsr fPrintCenter

Example: /asm/print.s

SwapVERALayers
Changes the z-order in VERA of layer0 and layer1.

BASIC

Function: XF$=”SWAPLAYERS”

Variables: {none}

Example: /basic/swapveralayers.bas or

/basic/swapveralayers.prg

Assembly

Function: jsr fSwapVERALayers

Setup: {none}

Example: /asm/swaplayers.s

FadeOut
Fades the screen to black by decrementing the palette colors to

zero.

BASIC

Function: XF$=”FADEOUT”

Variables: X1% -> fade speed (higher is slower). Typical use: 3

Example: /basic/fade.bas or /basic/fade.prg

Assembly

Function: jsr fFadeOut

Setup: ldy #3 -> fade speed (higher is slower)

Example: /asm/fade.s

FadeIn
Fades the screen from all black to normal operating mode.

NOTE: FadeOut must be executed before FadeIn. FadeOut makes a copy

of the current palette which is used to restore the palette to by

FadeIn.

BASIC

Function: XF$=”FADEIN”

Variables: X1% -> fade speed (higher is slower). Typical use: 3

Example: /basic/fade.bas or /basic/fade.prg

Assembly

Function: jsr fFadeIn

Setup: ldy #3 -> fade speed (higher is slower)

Example: /asm/fade.s

Highmem functions
The following two functions make using highram available to BASIC

programs in a simple and fast way. With it you can save 255 bytes at

a time to highram on a specified rambank with a specified

identifier. And read back the data based on the specified

identifier. The identifier is 1 to 4 chars long.

Allthough these function can be used from assembler, it is better

(faster and probably easier) to write your own routines in asm.

Example for basic: /basic/highram.bas or /basic/highram.prg. For

assembler: /asm/highmem.s

SaveToHighmem
Saves the content of a string to a specifief rambank with a

specified identifier. If an identifier is used again for the same

rambank, the value in the rambank will be overwritten.

BASIC

Function: XF$=” WRITE HIGHRAM”
Variables/setup:POKE $BFFF,5 -> use rambank 5

 X1$ -> string to store in highmem

 X2$ -> identifier/variable name

Returns: PEEK($14) -> If not 0, then an error occurred:

- 0 -> no error

- 1 -> rambank is full

Assembly

Function: jsr fSaveToHighmem

Setup: r0 -> address of data to be written to highmem. The

data should end with a $0 byte.

 r2 -> identifier/variable name

 $BFFF contains rambank to write to

Returns: lda $14 -> if not zero, then an error occurred

ReadFromHighmem
Reads a value from highmem based on a identifier.

BASIC

Function: XF$=” READ HIGHRAM”
Variables/setup:POKE $BFFF,5 -> use rambank 5

X1$ -> must be set to the minimal length of the data

that is being returned. If unsure, set it to 255

bytes.

 X2$ -> identifier/variable name

Returns: X1$ -> the data that has been returned

Assembly

Function: jsr fReadFromHighmem

Setup: r0 -> address of memory allocation to where the data

is going to be written. There should be enough

continues memory to store the data in.

 r2 -> identifier/variable name

 $BFFF contains rambank to write to

Returns: The data will be returned to r0 with a $0 byte

terminating the string.

Trim
The Trim, RTrim and LTrim all work exactly the same way. It removes

any spaces from the right-, left or right and left-part of a string.

BASIC

Function: XF$=”RTRIM” (or LTRIM or TRIM)

Variables: X1$ -> the string to be trimmed

Returns: The trimmed string is returned in X1$

Example: /basic/trim.bas or /basic/trim.prg

Assembly

Function: jsr fTrim (or fLTrim or fRTrim)

Setup: r0 -> address of the string to be trimmed, ending

with a $0 byte.

Returns: The string is trimmed in place, setting the $0 byte

to the end of the trimmed string.

Example: /asm/trim.s

Instr
Finds the first occurrence of a string within another string.

BASIC

Function: XF$=”INSTR”

Variables: X1$ -> the string in which to search

 X2$ -> the string to search for

Returns: PEEK($16) -> position of the string. 0 (zero) means

found at first position. If $FF is returned, the

string has not been found.

Example: /basic/instr.bas or /basic/instr.prg

Assembly

Function: jsr fInstr

Setup: r0 -> the string in which to search

 r2 -> the string to search for

Returns: r10L -> the position found. If $FF is returned, the

string has not been found.

Example: /asm/instr.s

Split
Returns an item of a string which is separated by a specific char.

You can think of the split function as returning an element of an

array.

BASIC

Function: XF$=”SPLIT”

Variables: X1$ -> the string which is separated by a char

 X2$ -> the separator (for example a comma)

X1% -> the item number to be returned (starting at

0)

Returns: X3$ -> the substring. The length of X3$ should be

big enough to fit the result in.

Example: /basic/split.bas or /basic/split.prg

Assembly

Function: jsr fSplit

Setup: r0 -> string to split

 r2 -> separator (1 byte)

 $BE00 -> index to retrieve

Returns: r6 -> the substring. The length should be big enough

to fit the result in.

Example: /asm/split.s

Tally
Counts the times a specific string occurs within another string.

BASIC

Function: XF$=”TALLY”

Variables: X1$ -> string to search in

 X2$ -> string to search for

Returns: PEEK($16) -> count of times X2$ occurs in X1$ (max

255)

Example: /basic/tally.bas or /basic/tally.prg

Assembly

Function: jsr fTally

Setup: r0 -> address of string to search in

 r2 -> address of string to search for

Returns: r10L -> count of times r2 occurs in r0 (max 255)

Keyboard handler
With the custom keyboard handler from x16lib you can check for each

key it is down or not down. Also when multiple keys are down. First

you have to initialize the custom keyboard handler, then you can do

your code in which you check the keys, when you’re finished (or quit

your program) you should reset the custom keyboard handler, to

restore it to the default one.

The custom keyboard handler uses address region $0400 - $494

BASIC example: /basic/keyboard.bas or /basic/keyboard.prg

Assembler example: /asm/keyboard.s

SetCustomKeyboardHandler
Replaces the default handler and initialize the $0400 memory area.

BASIC

Function: XF$=”INIT KBHANDLER”

Variables: {none}

Returns: {none}

Assembly

Function: jsr fSetCustomKeyboardHandler

Setup: {none}

Returns: {none}

CheckKey
Checks if a specified key is down or not.

BASIC

Function: XF$=”CHECKKEY”

Variables: X1% -> the keycode to check (0-128)

Returns: X1% -> 1=down, 0=up

Assembly

Function: jsr fSetCarryOnKeyDown

Setup: ldx with the keycode to check

Returns: Carry flag is set if key is down, not set if key is

up.

ResetCustomKeyboardHandler
Resets the keyboard handler to its default.

BASIC

Function: XF$=”RESET KBHANDLER”

Variables: {none}

Returns: {none}

Assembly

Function: jsr fResetCustomKeyboardHandler

Setup: {none}

Returns: {none}

